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ANTIPLANE PROBLEM FOR A SYSTEFl OF LINEAR INCLUSIONS 
IN AN ISOTROPIC MEDIUM* 

G.T. SULIM 

A method is proposed for the solution of the problem of antiplane shear of two half- 

spaces with a thin-walled tape inclusion of arbitrary mechanical nature at the 

interface of materials. The results are extended to the case of systems of curved 

inclusions in a homogeneous space and half-space. Underlying the method is model- 

ing the inclusions by a previously unknown jump in the tangential stresses and 

displacements. The dependence of the state of stress of the medium on functions of 

the jump and the external loading is determined. Two generalized stress intensity 

coefficients are introduced into the considerations, and asymptotic expressions are 

established for the stress and displacement fields in the neighborhood of the edge 

of the inclusion. Interaction conditions between the elastic inclusion and the 

medium are constructed, and an example of an elastic inclusion on the interface of 

materials is examined. The influence of the shape of the inclusion, which is vari- 
able from the elliptic to the rectangular according to a definite dependence, on 

the stress concentration. 

The problem of antiplance deformation of a body with an elastic arc inclusion was ex- 

amined earlier in /l/. The theme of this paper adjoins investigations of antiplane problems 

for bodies with slits /2/, and because of the known analogy is close to questions of station- 

ary heat conductivity for bodies with heat permeable cracks /3/. 

1. Inclusion on the interface separating the materials. Let a thin-walled in- 

clusion be on a straight line separating two materials that coincides with the OS axisofthe 

xOy coordinate syatem. The complex variable z = I + iy and tl.e coordinate z must be dii- 

ferentiated. The external load is determined by the homogeneous tangential stress field at 
infinity rUlm = z, rrzm = rL, as well as by the forces Qk acting at the points z,a E Sk (k = 2 
for the upper half-plane S,, and k = 1 for the lower half plane S,). The inclusion is 
assumed so thin that its action can be modeled by a certain jump in the stress all, and the 

displacements w on the middle line L,' of the interlayer: 

% - - tyr+ = f5 (z), w-' - Wf' = fs (z) (5 E L,) (1.1) 

Here and henceforth, the superscripts plus and minus denote the limit values of the ap- 

propriate quantities on the upper and lower edges of the line L, representing the abscissa 
axis; u) = W(I,Y) is the displacement in the Oz direction, the prime denotes the derivative 
with respect to the argument, and fs (5) = f6 (I) = 0 for x z L,'. 

Taking account of the Hooke's law 

ryz = paw 1 ag, 7sz = p aw 1 ax (1.2) 

where p is the shear modulus of the material at the point under consideration, we give the 
relationships (1.1) the form 

q/z- - ‘tyz+ = f5 (4, r,*- 1 Pl - %a+ 1 IL2 = f&l (5 E Lo) (1.3) 

The representation 

TV* + %z = 0' (z), w = IIm o(z)1 ! pk (2 E S,+) (1.4) 

o'(z)= z + ilk + iS (z) f W,'(Z), S (z)= 2 {Qk [2x+ ---z~~)]-~) 
k=1,2 

holds for the stress components and the displacement W in each of the half-planes,where oO'(z) 

is a holomorphic function in each of the half-planes separately, and tends to zero at infinity. 
Substituting the first of the relationships (1.4) into the conditions (1.3) and solving 
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the corresponding problem of the linear conjugate of the limit values just as this is done in 
/4/, we obtain 

w' (2) = ilvI;lB" (2) - ct,O (z) -t C,< (z), ch. (2) = 't -I- i izr + s (z) + +&.s* fz)l (1.5) 

t;@)=+ 5 9& s*(z)= S@) + 3&) 

%I 

Pr = 
t's 

~,Si;($=,Zti 12rt(z--z,k)l-' *L 
Ph. - P[ 

nlrz = 7 1 c = I’tl”1 (zf3Sh.; r= $6; .k,l= 1, 2; kfl) 

as well as the condition ",P.z .= '$1 for the stress at infinity. 
Therefore 

TV2 (2) + it,z (z) = ip&* (2) - C&O (2) c ryiO (3) + ir.&*" (2) (1.6) 

where t ' 
sence o~i!Z:t,YZ~s 

"(z)~ ch. (z) is the stress at the appropriate point of the domain in the ab- 
. Application of the Sokhotskii- Plemelj formula permits determination of 

the limit values of the stresses 

The value ht = 2 corresponds tothe upper sign, and k = 1 to the lower, 

2. System of rectilinear inclusions in an isotropic body. Let us consider 
N f 1 thin-walledinclusions in a homogeneous isotropic plane (space) (Fig.1). The external 
load is detemlined by the stresses at infinity z,TO = 2, rgO = TV, 

%I0 
and the force Q,atthepoint 

of the main coordinate system G%Yo* The middle line L,'of the p-th inclusion (p = 0, 
1 , . * f, N) belongs to the abscissa axis L, of the local system z@pyp defining the complex 
variable zI, = xp + iy,. The coordinates of the point 0, in the main system are defined by 
the values z. = zap, and the axis .zp makes the angle ap with the r. axis (zoo = 0, czO = 0). 

In the absence of inclusions, the external load determines the potential 

WOO' (Z@) = T + it, + is," (z*) 

So" (zp) = QI 1211 (z - z,,~)]-', z,,' = @,I0 - z,,)exp (-4~~) 
in the main system. 

For one inclusion along the line &,,' of the homogeneous piane, which determines the stress 
jump fjm* (z) = f6RI (z) + i&i (3) according to (1.5) , the complex potential in the m-th coordin- 
ate system is 

Denoting the expressions for the potentials o,,,'&), o,,'(z,) in the p-th system by 

%nl" (z,), %" (z,), the stresses in the m-th system by rr~nzr~yim, and taking account of the 
equality zyio -+- in,,, = (T~,~~~ i itXlm) exp (-ia,) , we can write /l/ 

Omp’ (zp) = am’ (2,‘) exp (iapm)r oop’ (2,) = iSop (2,) 4- (z -I- ir,) exp (ia,) 

Z, v = (Z, - z,,)exp (-ia,), .Zp = zyl exp (iaJ + zap, upm = c+ - a, 

02 On the basis of the superposition prin- 

r___._-----------l ciple, which is completely applicable under 
these conditions, the solution oftheproblem 
posed isdetermined, in the p-th coordinate 
system, by the potential 

Then the stresses at an arbitrarypoint 

;- I 
of the plane are 

L_____---__---------I %/zp (zp) -I- %I (z,) = (+P’ (+I= (2.7.) 

Fig.1 

N 

-5 m 2rr 
Ppn, (t, 2) ff (t) at + &p (zp) + %2P (2,) (p = 07 1, . . . 9 .v 

n&=0 L,’ 
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* 0 

where -$rp, zxzp are stress tensor components at an appropriate point in the planeintheabsence 
of inclusions 

Gtlr (z&J -I- &W (z*) = is,p (zp) + (z + it,)exp (iap) (2.3) 
PPm 0, z> = (T, - &Pexp (icr,), T, = t exp (ia,) -k zom 

Utilization of the Sokhotskii- Plemelj formula yields the following expressions for the 

limit values on the line L,,‘: 

(2.4) 

PpIl, (t, x) = (T,, - XJ' esp (ial,), X, = q esp (&) + znp, (p = 0, 1, . . . . N) 

Formulas (2.2) and (2.4) hold for any functions of the jump. If they are unknown, con- 
ditions for the interaction between the inclusion and the matrix 

qtFp (&, T$,) = 0 (p =: 0. 1. .) iv) (2.51 

that follow from an examination of some mechanical model of the inclusions, must be used. 
Substituting (2.4) into the conditions (2.5) results in a system of integral equations in the 
jump function. Moreover, these functions should satisfy additional conditions that follow 
from physical considerations, of the form, for instance 

[ f~p(t)dt=‘l,=coilxt (p=(,.l,....n-) (2.6) 
L> 

As an example, if the first p1 inclusions are modeled by slits on whose edgesthestress- 
es Q*(z~) (q = 0, I, ., pI - 1) are given, while the rest are represented by stiff inclusions in- 
serted with the tension (~',lfi(z,)(r =pl,..., IQ), then such interaction conditions have the form 

T$, (+q) = f (+e), T& (SF) = i""?' (z,) (Irl f &', zy E AI') (2.7) 

and the additional conditions have the form (2.6) for Ap= 0. 
In particular, for p1 = 1%. + 1, T>* = tv- , there follows fSpfrqf= 0 and a system of integral 

equations for a set of longitudinal shear cracks /2/ from (2.7) and (2.4). If the inclusions 
are elastic, then relationships of the form (6.5) and (6.8) can be used, Application of other 
interaction conditions permits a study of distinct models of elastic inclusions/l/ or inter- 
layers with other mechanical properties: plastic, liquid, etc. 

3. A system of inclusions in a half-space, Let Lo'= I-co,m], and let the other 
inclusions be in the lower half-plane. Then on the basis of the inversion formulaforasingular 
integral equation /5/, it follows from the relationship (2.4) taken fox the value p = 0, that 

Defining fao($ as the real part of (3.11, we have after having substituted the expression ob- 
tained into the remaining relationship (2.4) for P = 0, 1,. . .I N : 



226 G.T. Sulim 

Analogously defining the function fso (?I} as the imaginary part of 
we obtain 

fSo* (q) from (3.11, 

G!& w + %&I (+I = =f v&t @PI + I- (& -I- &&PI + GP (.zP) -I- k&p (& (P = 1 f 2, * . = I N) (3.3) 

The following values of the integrals are used in deriving (3.1) and (3.2): 

(3.4) 

ft. is convenient to use (3.2) for displacements given on the half-space bvundary, when 
w-' {.r) sz t;:, (x) I E", and (3.3) is taken when the tangential stresses ?& are known onthebound- 
ary. If xp is replaced formally by zP in (3.2) and (3.3), and the terms TV&* (xJ are 
discarded, then we obtain an expression for the stress at an arbitrary point ofthehalf-plane. 

4. Inclusions of curvilinear configuration, The results obtained above are gen- 
eralizednaturallyto the case when &,'are arbitrary smooth curves given parametrically by the 
equation z. = zzy* (3) = xp* (2) + iy,* (s). Because of the possibility of considering such a line 
astbelimit of a set of contiguous rectilinear segments, we note that the relationships (2.2) 
are conserved if only we set 

T, = zP* (x), c+, - c+, (t) = arc& iy,"' (t) i LQ,*' (t)f (4.11 

f,", 0) = Gz, (t) - 7;z* (0 + i G, 0) - %p - @)I 

Bere the n,% among the subscripts govern the direction of the normal and the tangent 
of the line L,'at the appropriate point zp* (t). In this case (2.4) is converted into 

where x, = zp* (z), a, - ap (s), ana z is the value of the natural parameter on the arc. The 
expressions (3.2) and (3.3) are modified similarly. 

The interaction conditions for the inclusion and the matrices for curvilinear inclusions 
should be represented, analogously to (2.41, in the form 'p,(z&, &,)= 0 (p = 0,1,..., N). 
From (4.2) and the conditions z& = O(p = 0, 1, . . ., N) and taking account of the analogy in 
/3/, a system of singular integral equations for the antiplane problem follows for a system 
of curvilinear slots /6/. Utilization of simplified interaction conditions (conditions (11) 
in /3/f permits obtaining the result of /l/ for an elastic arclike inclusion. 

5. Asymptotic expressions, If functions of the jump at the endfaces of the p-th 
inclusion have a root singularity (utilization of the conditions (2.7) or (6.51, (6.8) results 
in precisely such a case), then on the basis of the formula /5/ 

as well as the relationships (2.11, (2.2), (1.4), the asymptotic expressions 

(5.1) 

(5.31 

(5.4) 

(5.5) 

follow, where 

k,aP - ik,‘” = Tp&/J6 
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zTzP,r~tg,p are tangential stress components in a local polar coordinate system at the end ofthe 
p-th inclusion, S, is the distance between the point zp' (x) on the line LPI and its end 
a$, and the upper sign is selected in (5.1) and (5.5) if the right endface of thisincLusion 
is considered, and the lower sign, i f the left endface is considered, k~ap,kglp are general- 
ized stress intensity coefficients for the antiplane strain (the stiff and flexible parts of 
the stress distribution in the terminology of /7/). The expressions (5.2) and (5.4) agree 
with those obtained in /7/ for tapered elastic inclusions of arbitrary shape, particularly, 
hypocycloidal and hypotrochoidal. 

Formulas(5.3) and (5.4) also hold for inclusions of smooth curvilinear shape. To use 
(5.2) in this case it is necessary to orient the x1, axis of the local coordinate system along 
the tangent direction at the appropriate end of the line Lp’. 

6. Interaction conditions for an elastic inclusion and matrix. Let us con- 
sider an inclusion of small thickness 2h(z) whose axis of symmetry is the segment L,' = la,_, 
aO+l. Along L,“’ the inclusion makes contact with the domains Srwhich, if necessary, can be 
represented in the form of half-planes with shear modulus FL,+, respectively, (h = 1,2) (Fig.2). 

Using the equilibrium condition &,,cJdy i_ 8~~~~ ids = 0 and integrating firstwithrespect 
to ybetween the limits -Jr end h, and then with respect to x between a,- and I? we obtain 

(6.1) 

where the subscript b denotes a quantity referring to the inclusion, while the superscript 
I;= 1, 2 refers to the value of the functions on the line L,,L'. On the other hand, taking 
account of the slight thickness of the inclusion and of (l-2), we have 

Fig.2 

TX; (x) 2 v, (t:z* + TiZb) = ‘/*p&ax :i (w** + w*l) (6.2) 

The conditions for ideal mechanical contact between the 
inclusion and the matrices can be represented in the form 

Here and henceforth in this section w is the displace- 
ment field in the matrix, and wg is the corresponding dis- 
placement in the absence of an inclusion which satisfiesthe 
conditon 

Taking into account the approximate equality w (x * ih) = w*(x)& hdta,, (x 2 ih)l@ as well 
~4 the conditions (6.3) and (6.4) and the smallness of the quantity h, we obtain 

z,,+ -I- 'tliz- = rlir (2 -t ih) + ryr (r - ih) = ,.% I(W* - W-)/h -t ZVz" (X f ih) / IQ -t tvLo (.z - ih) / p,] (6.5) 

cd 

w+--w-m Si $_ - _$ -1 & ‘. w_* 
a+- 2 

(w_*=constf (6.6) 

If it is assumed that w(.z& ih)-_ W* (.z), then a more simpler expression will hold 

%E+ f ryr- = pb(w+ - w_)lh (6.7) 

On the basis of the contact conditions (6.3) and (6.1) and (6.2), we will have 

~L;,(W+' + W') = ar:,(&-) -1 h (=) f (r& - 7;:) at (6.8) 

a, _ 

The relationships (6.8) and (6.5) or (6.7) comprise the interaction conditions for the 
inclusion and the matrices. Let us note that upon substituting (l-7), (2.41, (3.2) or (3.3) 
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into these conditions during the construction of the governing system of integral equations 
for tyzf, T=,* , it is more expedient to replace suzO (z), ~~~~ (P) by Tyzo (I& ih), zx,o (5 + ih). 

7. Example. Let us examine the case of a rectilinear elastic inclusion along the seg- 
ment &'=I--a,al, the line separating the materials, in more detail. Substituting (1.7) into 
conditions (6.5) and (6.8) with the remark made at the end of Sect.6 taken into account, re- 
sults in the system of equations 

x 

I,’ (I) + p6ib (L) - & \ fs (t) df = FB (z) 
(7.1) 

--(1 
s (Is 1 -< 4 

I,’ (z) -t- &j, (r) - * 5 /S (0 dl = F,(x) 
-a 

with the additional conditions 

5 lb (1) df = i fa (1) df = 0 

-a -a 

Here 

(7.2) 

(7.3) 

The quantities w_* and $rc(--a) must be determined from a priori formulas. 
As h+O,and pb= 0 or pi,= 03, results for a crack and an absolutely stiff film onthe 

material interface follow, respectively: 

fj (5) = 0, t: (2) = "ul (z) i c _. Q (2) (necessary is hr' (-a) = 0) (7.4) 

fa (z) = 0, t6" (2) = -rXz"+(s)/ pa = 0,~ (z) (necessary is w_* = 0) (7.5) 

The solution of the integral equations (7.4) and (7.5) is presented in /5/, and we have in 
the absence of concentrated forces: 

For a crack 
fs (z) = 0, fs (z) = tz/ [CX (z)], tvi+ = 0, z,,* =?=z+rdx (z), w+ = -crx (z) / ILI( 

k,’ = TV’;, k,% = 0 (I 3 I < a) 

For an absolutely rigid film 

fb (x) = -2r,s / x (z), f, (5) = 0, ryz* = +z,z ! x (z), r,,* = 0, 

w* = 0 

k,’ = 0, ks2 = 7,J& (I z I d a) 

For a real absolutely rigid inclusion with nonzero thickness, we should take PI, = 00, w_* = 0, 

and then (7.1) is converted into 

fa (t) dt = - h (r) I + (2 + ih) TY,, (5 - ih) 

P.. 
+ 

I% 1 
(7.6) 

It can be shown that the displacement jump u,(z+ ih)- w(z- ik) at the ends of a rigidinclusion 
is zero within the framework of the approximation in Sect.6, because of (7.6). 

If the materials of the half-planes and of the inclusion are identical ()I~= p,= oh), then 
(7.1) yields fs(~)=f~(z)= 0, which results in the solution for a homogeneous plane (space). 

The approaches represented by other authors /1,3/ for the solution of the antiplaneshear 
problem for bodies with elastic inclusions do not permit obtaining so accurate a soluition of 
the problem in the last two cases. 

We have &= PI== 0 when the mechanical characteristics of the half-plane materials are 
equal (pl= pp= ~),then (7.1) simplify considerably. Then the solution of (7.1), (7.2) for 

h (2) = h, [I - (z / u)~]~~(~*’ (ho = con&, 4 >, 1) is sought in the form of a series of Chebyshevpolynomials 



Rntiplane problem for a system of linear inclusions 229 

of the first kind with the root singularity extracted m 

=5,6; frI<i) 
(7.7) 

To determine the coefficients A l,rof the expansion with the use of the procedure of the 

method or orthogonal polynomials /a/, a system of linear algebraic equations is constructed 

(7.8) 

%r = y j__.l Y 
s,n (pp) (- J)j 

r (1 + 5 + Pj) r (S -- Pj) ’ 

/@f = i F, (ill) r/l - I’ G, (f) dl 

-LI 

aaF = ar 1 ho, o=l-1/(2q), zpj=k+(-lyp 

Let us note that for inclusions of elliptical (q= I) and rectangular profile (q= m) 

Therefore, for g= 1 the solution of the system (7.8) is written explicitly A~,r=2pf&,f(x (pi- 

%% Moreover, if there are not concentrated forces, then F,(~)=F~=con~t and then: 

A,’ = F& 1 f (p -I- aoh fv (4 = QF, f [(I + a,)y’a’ - ~‘~1 

The generalized stress intensity coefficients can be represented by the sum 

6'. 6 

Fig.4 

Fig.3 

The dependence of the generalized stress intensity coefficients on the parameters k and 
Q under the effect of stresses at infinity has been investigated numerically. It was assumed 

in the computations 

k = pe / p, afh, = 10, w_* = 0, Qp (--a) = r,,o (--a) / max (1, k-1) 

To assure 1% accuracy in the calculations, it turned out to be sufficient to limit our- 
selves to not more than 25 of the first nonzero coefficients (for the load AsP'=~,P= i,2,...) 
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in the expansion (7.7). The results in /9/ afforded a foundation for convergence of the cal- 
culation process. 

The dependence of li,l(!Q= 0) on the parameters k and 9 for rl-= 0 is represented in Fig.3. 
Displacement of the upper edge of the inclusion is illustrated by the upper part of Fig.3, 

where results obtained for q= 1 are represented by solid lines, and for ii= IO4 by dashes. 
The calculations verified the tendency of IL, to approach zero as k increases. It turns out 
that I(,' depends insignificantly on the inclusion shape for relatively pliable inclusions, 

however, for large k the effect of the shape appears to be sufficiently significant. At the 
same time, according to /1,3/, the corresponding coefficient is k,l= 0 for such externalload- 
ing and /i=30. 

The change in /ca' (k,' =O) is displayed in Fig.4 for r:O. This coefficient depends weak- 
ly on the shape of the inclusion and is practically zero for h<l. Computations showed that 

the assumption ~~~~(--a)== 0 /l/ results, for Ii= 1, in a physically unreal, nonzero value 
0, s,-,(r/l/ F ) = 0.0909 for an elliptic, and 0.247 for a rectangular inclusion, which is 9 and 25%, 

respectively, of its maximum value. 

The results presented in this paper are carried over directly /3/ to the corresponding 

problem of stationary heat conduction of a heat insulated plate with heat conducting inclus- 

ions. 
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